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Abstract: Vehicle routing problem (VRP) is a model to determine an optimal routing plan for a 
fleet of homogeneous vehicles to serve a set customer which some operational constraints are 
satisfied. In most practical distribution problems, customer demands are served using a hetero-
geneous fleet of vehicles. This kind of VRP is called Heterogeneous Vehicle Routing Problem 
(HVRP). HVRP has evolved into a vibrant research area because of its practical. There were 
many studies of rich extensions of the standard HVRP. This research aims to enrich the 
extensions of HVRP which is motivated by a real case in one of a pharmacy distribution company 
in Indonesia which is delivered multi-products to its 55 customers by allowing some vehicles 
which have a small capacity to perform multi-trips. This problem is called Heterogeneous Vehicle 

Routing Problem with Multi-Trips and Multi-Products (HVRPMTMP). The mixed-integer linear 
programming is developed based on four-index vehicle flow formulation. The model can be used 
generally in the same context of the distribution problem. HVRPMTMP is generally NP-Hard 
problem, so the computational time using branch and bound in LINGO 16.0 is increasing expo-
nentially by increasing the number of customers. Genetic algorithm is proposed to solve the real 
case. The result of the proposed GA can reduce the total cost from Rp 352540.6,- to Rp 180555,- 
or 48.78% from the current company policy. 
 
Keywords: Heterogeneous Vehicle Routing Problem; Multi-Trips; Multi-Products; Mixed 
Integer Linear Programming; Genetic Algorithm. 
  

 
Introduction 

 

Transportation cost can be reduced in several ways. 
One of them is by optimizing the sequence of vehicle 

route. The classical vehicle routing problem (VRP) 
aims to design optimal delivery routes where each 

vehicle has the same characteristics (capacity), each 
vehicle only travels one route with only one depot 

(Braekers et al. [1]). The VRP aims to determine 
routes of given vehicle fleet at minimum cost (Toth 
and Vigo [2]). 

 
Since the VRP problem was first introduced by 
Dantzig and Ramzer [3], hundreds of papers were 
devoted to the exact and approximate solution of the 

many variants of VRP (Baldacci et al. [4]). There 
exists a rich literature on the VRP and its variants. 
The surveys are conducted by Cordeau et al. [5]; 
Laporte [6]; Braekers et al. [1]; and the books by 

Golden et al. [7] and Toth and Vigo [2]. In classical 
VRP which is called Capacitated Vehicle Routing 
Problem (CVRP), the fleet of a vehicle is homoge 

neous (identical) while in most practical distribution 

problems, customer demands are served by heteroge-
neous fleet of vehicles. 
  
 

1 Faculty of Industrial Technology, Department of Industrial Engi-
neering, Universitas Katolik Parahyangan, JL. Ciumbuleuit 94, 
Bandung 40141, Indonesia Email:  fransetiawan@unpar.ac.id. 

2 Faculty of Engineering, Department of Mechanical and Industrial 
Engineering, Universitas Gadjah Mada, JL. Grafika 2, Jogjakarta 
55284, Indonesia. Email: aini@ugm.ac.id; zita.pramuditha@gmail.com 
 

* Corresponding author  

This problem is called Heterogeneous Vehicle 

Routing Problem (HVRP) (Koҫ et al. [8]). 

 

HVRP generally considers a limited or an unlimited 

fleet of capacitated vehicles, where each vehicle has a 

fixed cost, in order to serve a set of customers with 

known demands. Two major HVRP problems are the 

Fleet Size and Mix Vehicle Routing Problem (FSM) 

which works with an unlimited heterogeneous fleet 

and the Heterogenous Fleet Vehicle Routing Pro-

blem (HFVRP) in which the vehicle is limited (Koҫ et 
al. [8]). 

 

HVRP, which was introduced some 30 years ago, has 

evolved into a rich research area because of its prac-

tical. The number of research in HVRP area are 

increasing in the last decade for both FSM and 

HFVRP. Several versions of the problem have been 

studied, and its applications are encountered in 

many settings. Research in standard HVRP and 

FSM focuses on lower bounding techniques, heuris-

tics and metaheuristic for solving HVRP. Over the 

years, most of the research effort has shifted toward 

the study of rich extensions of the standard HVRP, 

such as time windows, multiple depots, external 

carriers, pickup and deliveries, multi-trip, backhaul 

and green HVRP. There still exist numerous rese-

arch opportunities on these rich extensions (Koҫ et 

al. [8]). 

 

In order to enrich the extensions of HVRP and 

inspired by a real case in pharmacy distribution 
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company in Indonesia that has heterogenous fleet in 

delivering their multi-products to their customer and 

it has kind of vehicles with small capacity. These 

small capacity vehicles are possible to make more 

than one trip in their workday in order to maximize 

their utilization. This condition is called multi-trips 

VRP (Gendreau et al. [9]). The multi-trips is indi-

cated by allowing the vehicle to perform more than 

one route during a planning horizon (Suprayogi and 

Priyandari [10]). Due to the possibility to assign 

several routes to the same vehicle, multi-trips VRP 

can make using fewer vehicles (Taillard et al. [11]). 

The fixed cost of vehicles can be saved by using fewer 

vehicles (Huang and Lee [12]). The multi-trips VRP 

has gained research interest for the recent year is 

the development of new distribution schemes in 

cities. The new scheme is related to congestion and 

pollution to study new distribution scheme to 

increase city livability. The infrastructure of the city 

often forces the final deliveries to be performed using 

a small size vehicle. (Cataruzza et al. [13]). 

 

Research in HVRP with multi-trips (HVRPMT) has 

been conducted by Prins [14], Sexias and Mendez 

[15], Cruz et al. [16] and Coelho et al. [17]. Prins [14] 

developed a heuristic to minimize the total duration 

of trips and to minimize the number of required 

vehicles as a secondary objective. There was no 

mathematical model and not involving the cost of 

vehicles. The total duration of every vehicle is limi-

ted to working hour per day. Sexias and Mendez [15] 

tackled HVRPMTMP with time windows and res-

tricted to driver hours using column generation pro-

cedure to find dual bounds. The maximum number 

of routes in a workday is predetermined for con-

venience purpose. The goal is to determining the 

workday of each vehicle in the fleet to minimize the 

total cost of the distribution operation from a single 

depot using vehicle variable cost. Cruz et al. [16] 

proposed HVRPMT with maximum route distance in 

which all vehicles must be used at least once before 

allowing multi-trips. The fixed costs are ignored, and 

the routing cost is vehicle-independent. In this 

research, the maximum demand for a given cus-

tomer is greater than the minimum vehicle capacity. 

Coelho et al. [17] proposed HVRPMT with docking 

constraints in which some vehicles are unable to 

serve some particular customers. They proposed a 

trajectory search heuristic called GILS-VND that 

combines iterated local search (ILS), greedy ran-

domized adaptive search procedure (GRASP) and 

variable neighborhood descent (VND) procedures. 

The objective function was minimizing vehicles fixed 

cost and distance-based cost. 

 

The researches above are minimizing the travel time 

and the number of vehicles (Prins [14]), minimizing 

total vehicle variable cost (Sexias and Mendez [15] 

and Cruz et al. [16]), minimize vehicle fixed cost and 

distance-based cost (Coelho et al., [17]). There is no 

mathematical formulation in Prins [14], Cruz et al. 

[16], and Coelho et al. [17]. Mathematical modelling 

was developed in integer programming formulation 

with variable vehicle cost, time windows and driver 

work hour in Sexias and Mendez [15]. To our best 

knowledge, the mathematical formulation of 

HVRPMT with a fixed cost and variable cost has 

never been developed before. This fixed cost mainly 

occurs when the vehicle is not owned by the 

company, and the vehicle is performed by the third 

party (the cost to rent vehicle). The number of 

vehicles can be reduced since the fixed cost is also 

reduced by performing multi-trips.  

 

In this research, we modeled a real case in an 

Indonesia’ pharmacy distribution company. This 

company delivers multi-products. Moreover, we also 

propose a mathematical model of Heterogeneous 

Vehicle Routing Problem with Multi-Trips and 

Multi-Products (HVRPMTMP) with fixed and 

variable vehicle cost to solve that problem. 

 

HVRPMTMP is a natural generalization of VRP, so 

HVRPMTMP is an NP-hard problem. Since it is an 

NP-hard problem, a metaheuristic method is neces-

sary to solve the problem in reasonable computatio-

nal time. Metaheuristic can carry out a more 

thorough search in the solution space, and it can 

produce high-quality solution consistently, despite it 

needs a longer computational time than heuristic 

(Cordeau et al. [5]). 

 

Methods 
 

In this section, we present study literature of related 

work on heterogeneous vehicle routing problem with 

multi-trips and heterogeneous vehicle routing pro-

blem with multi-products. We also present the gene-

ral ideas of this research. 

 
Related Work on Heterogeneous Vehicle 

Routing Problem with Multi-trips 

 

Researches in heterogeneous vehicle routing pro-

blem with multi-trips (HVRPMT) have been con-

ducted by Prins [14], Sexias and Mendes [15] and 

Cruz et al. [16]. Prins [14] proposed a heterogeneous 

vehicle routing problem with multi-trips with a fixed 

number of vehicles. He developed a heuristic to 

minimize the total duration of trips and to minimize 

the number of required vehicles as secondary 

objectives. There is no mathematical model and not 

involving the cost of vehicles. The total duration of 

every vehicle is limited to working hour per day. He 

tried several heuristics and chose the very efficient 

one to give outstanding initial solutions for a tabu 
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search method. He used a real case of a French 

manufacturer of furniture with 775 destination 

stores.  

 
Sexias and Mendes [15] researched heterogeneous 
vehicle routing problem with multi-trips with time 
windows and driver work hours. A mathematical 
model was made denoted as integer programming 
based on arc flow variables. The maximum number 
of routes in a workday is predetermined for con-
venience purpose. The goal is to determining the 
workday of each vehicle in the fleet to minimize the 
total cost of the distribution operation from a single 
depot using vehicle variable cost. They used con-
structive heuristic and tabu search to find a good 
valid integer solution. To evaluate the performance 
of the heuristic, a column generation algorithm with 
state of the art techniques was presented that was 
able to generate excellent dual bounds. The column 
generation was solved by a particular dynamic 
programming algorithm for the elementary shortest 
path problem with resource constraints. 
 
Cruz et al. [16] proposed HVRPMT with maximum 
route distance in which all vehicles must be used at 
least once before allowing multi-trips. The fixed costs 
are ignored, and the routing costs are vehicle-
independent. In this research, the maximum 
demand of a given customer is greater than the 
minimum vehicle capacity. This work was motivated 
by a real case problem of a large-size distribution 
company operating more than 370 stores in the 
Northeast of Spain. The multi-trips were performed 
whenever the demand in a given time period is 
greater than its fleet capacity. To solve this problem, 
they proposed a hybrid algorithm that combined a 
randomized Clarke and Wright’s Savings heuristic 
and three local search methods: 2-opt, a temporary 
memory of the best routes found, and a splitting 
technique. 
 

Coelho et al. [17] studied HVRPMT that considers 

docking constraint in which some vehicles are 

unable to serve some particular customers. This 

study was inspired by a real case of a large 

distribution company. The objective function was to 

minimize vehicle fixed cost, distance-based cost and 

a cost per customer visited. They proposed a 

trajectory search heuristic called GILS-VND that 

combined iterated local search (ILS), greedy ran-

domized adaptive search procedure (GRASP) and 

Variable Neighborhood Descent (VND) procedures. 

 
Related Work on Heterogeneous Vehicle 
Routing Problem with Multi-products 
 
Researches in heterogeneous vehicle routing pro-
blem with multi-products (HVRPMP) have been 
conducted by Prive et al. [18] and Cruz et al. [19]. 
Prive et al. [18] proposed a heterogeneous vehicle 

routing problem with multi-products arising in soft 
drink distribution. The vehicles must deliver goods 
and recyclable pickup materials at customer loca-
tions. Their unit weight measures products and unit 
volume restricted to vehicle volume capacity and 
vehicle weight capacity. The problem was modeled 
as a mixed-integer program and proposed three 
heuristics, a constructive heuristic and two petal 
based heuristics. 
 

Cruz et al. [19] conducted research in heterogeneous 

vehicle routing problem with multi-products with 

time windows. Products are also measured by its 

weight and volume restricted to vehicle volume 

capacity and vehicle weight capacity, which is same 

as what has been done by Prive et al. [18] above. The 

problem was modeled with integer programming. To 

solve this problem, they proposed a procedure based 

on ant colony optimization with two-pheromone trail 

strategy combined with tabu search. 

 
General Ideas on This Research 
 
This research proposes the new extension of a 
heterogeneous vehicle routing problem with multi-
trips and multi-products (HVRPMTMP) with fixed 
and variable vehicle cost. A real case motivates this 
research is one of a pharmacy distribution company 
in Indonesia. The company has to deliver its multi-
products to 55 customers scattered in Yogyakarta, 
Indonesia with heterogeneous kind of vehicles and 
there are vehicles with small capacities that can 
make more than one route in its working day in 
order to maximize their utilization. The objective is 
to minimize total cost. Two scenarios are made in 
this research. The first scenario is if the vehicles are 
owned by the company, so only the variable cost is 
considered. The second scenario is if the vehicles are 
not owned by the company, so there is a fixed cost of 
every vehicle that is different from vehicle type. This 
fixed cost is the cost to rent a vehicle which 
performed by the third party. Vehicle variable cost is 
dependent on the vehicle type that is obtained by 
fuel cost per minute. The mathematical model is 
developed using mixed-integer linear programming 
(MILP) based on four-index vehicle flow formulation, 
which was proposed by Cattaruzza et al. [13]. This 
model is solved using branch and bound in LINGO 
16.0 solver and genetic algorithm. In this research, 
we use travel time data between customers rather 
than the distance between customers because travel 
time is capturing more the real traffic condition in 
the city due to congestion.  
 
Research Method 

 

Our research method is begun with study the real 

case distribution problem in one of a pharmacy 

distribution company in Indonesia and do literature 

study about previous research in HVRP and find the 
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extension possibility in HVRP problem by consi-

dering that real case. Then we make a system 

description of the problem. After studying the system 

description, then we develop a mathematical model 

by studying the mathematical model in previous 

researches which related to this problem and make 

an adjustment on them based on the characteriza-

tion of the studied system. A mathematical model 

that has been developed is then tested to a simple 

case to check whether the developed model is valid. 

Model is solved using branch and bound in LINGO 

16.0 solver and examine the result. Output 

verification is done by examining the output of the 

mathematical model from the LINGO 16.0 whether 

it exceeds the constraints. The real case is solved 

with an exact method (Branch and Bound) in 

LINGO 16.0 solver. HVRPMTMP is NP-Hard so 

firstly we try to use a small number of customers 

first to know how far the exact method can handle 

the problem as the number of customers increase. If 

the case can not be solved exactly using LINGO 16.0 

in reasonable computational time, then meta-

heuristic method is proposed to solve the problem. 

We proposed a genetic algorithm to help in solving a 

real case. After the genetic algorithm is developed, 

the GA algorithm is compared to the exact solution 

of small problem size from LINGO 16.0. If the result 

from the exact solution and GA are the same for 

small problem size, the algorithm is verified. Then 

the result between our proposed GA is compared 

with the current company policy and then analyzed. 

 

Results and Discussions 
 

Problem Definition and Notation 
 

The system studied in this research is a distribution 
planning system which company has to distribute its 
multi-products and has heterogeneous vehicles 
(different types and capacities) to serve its customers 
in one period of a working day. The vehicles are 
allowed to make more than one trip as long as they 
do not exceed the working day. The sum of the 
customer demand visited by a vehicle in one route 
does not exceed the vehicle capacity. All customers 
must be visited, and each customer is visited exactly 
once. Customer demand is delivered in full supply 
(there is no split delivery) and deterministic. All 
deliveries are started from the depot and ended at 
the depot. Customer demand is calculated as volume 
demand based on the unit volume of the product and 
the quantity of the product demanded by the 
customer.  The illustration of the problem studied in 
this research is shown in Figure 1. 
 
Figure 1 shows that there are three types of vehicles 
(blue, red and green). Vehicle blue is assigned two 
trips to visited customer 12, and 7 then go back to 
the depot and visited customer 3 and 10. Vehicle red 
is assigned one trip to visited customer 2,4 and 9.  
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Figure 1. The illustration of the problem 

 

Vehicle green is assigned one trip to visited customer 

11, 6, 5 and 3. 
 

In graph, HVRPMTMP is defined as a complete 

graph           where                   is the 

set of nodes, node 0 corresponds to depot and 

               and     is the set of arcs. 

Customers set is denoted by         ; each 

member has the total demand Qi. Travel time from 

node i to j is denoted as Tij. Ai is the quantity of 

product p which is demanded by customer i, while Bp 

is a unit volume of product p.               is the 

set of vehicles with heterogeneous capacity. Capk is 

the capacity of vehicle k. Vk is the variable cost of 

using vehicle k, and Fk is the fixed cost of using 

vehicle k. Tmax is working hour per day.    
            is the set of routes of each vehicle. NRK is 

the total number of vehicles available times the total 

routes available. Total routes are set arbitrary and 

assumed the same for all vehicles since there is a 

working hour restriction that limits the number of 

routes a vehicle can travel. Cijkr is the cost of 

transportation from customer i to customer j using 

vehicle k at route r that is obtained from Tij 

multiplied by Vk. Yikr is 1 if customer i is visited by 

vehicle k at route r, 0 otherwise. Uikr is a load of the 

vehicle k at route r after visiting customer i. Xijkr is 1 

if from customer i to customer j is assigned using 

vehicle k at route r.  

 

Mathematical Model 
 

The mathematical model for HVRPMTMP is con-

structed as follow 

Objective function: 

Min  ∑    
 
         ∑ ∑ ∑ ∑           

 
   

 
   

 
   

 
      (1) 

Subject to: 

∑ ∑        
                          

                           (2) 

∑ ∑          
     

                                                    (3) 

∑                                  
   
   

  (4) 

(1) 
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∑                                   
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                                                 (6) 
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                                                                        (7) 

∑                               
              (8) 

                                 

                                                                             (9) 

                                          

                                                        (10) 

∑ ∑ ∑           
         

               
        (11) 

                                           (12) 

                                         (13) 

 

The objective function in (1) is to minimize the total 

cost of the trip, including vehicle fixed cost and 

vehicle variable cost. Constraints (2) ensure that 

every customer is visited only once. Constraints (3) 

show that the maximum number of routes and 

vehicles can be used. Constraints (4) and (5) show 

the same vehicle and route enters and leaves a given 

customer. Constraints (6) ensure that the demand of 

customer is the accumulation of volume unit of the 

product multiplied by order quantity of product. 

Constraints (7) make the sequence of the activated 

trip is from R to R+1. Constraints (8) ensure that 

every trip does not exceed the vehicle capacity. 

Constraints (9) and (10) ensure there are no sub-

tour. Constraint (11) is the restriction of a maximum 

working hour per day. Constraints (12) and (13) 

define the solution space of the decision variables. 

 

Model Testing 

 

To explain the model, we generated a small instance 

with 7 vertices and two types of vehicle. There are 

two vehicles type 1 (small capacity) and one vehicle 

type 2 (big capacity). Vertex 1 is denoted as a depot, 

and the others are denoted as a customer, and there 

are three types of vehicles. The maximum working 

hour per day is 420 minutes. This small instance is 

then tested using 2 kinds of scenarios. 

 

The first scenario: The company own the vehicles 

(we consider the variable cost, only). The second 

scenario: The company own the vehicles, but the 

third party running the business. In this case, there 

will be a fixed-cost for renting the vehicles, which 

depend on the vehicles-type. Exact method branch 

and bound in solver LINGO 16.0 is used to solve this 

small instance. The customer demand data, travel 

time data from customer   to   and vehicle specifica-

tion data for small instances testing are shown in 

Table 1, Table 2 and Table 3. 

Table 1. Customer demand for small instance 

Product Type Volume unit 
Customer demand 

1 2 3 4  5 6 7 

A 2 0 0 5 0 5 0 10 

B 5 0 1 2 3 4 7 5 

C 10 0 2 1 3 2 0 0 

 
Table 2. Travel time from customer i to j for small 

instances (in minutes) 

 1 2 3 4 5 6 7 

1 0 13 13 13 16 42 64 

2 13 0 39 14 14 12 30 

3 13 39 0 7 14 5 8 

4 13 14 7 0 9 5 5 

5 16 14 14 9 0 21 69 

6 42 12 5 5 21 0 23 

7 64 30 8 5 69 23 0 

 
Table 3. Vehicle Specification 

Vehicle Capacity 
Fixed cost per 

vehicle 

Variable cost per 

minute per vehicle 

1 80 1000 200 

2 80 1000 200 

3 250 6000 700 

 
Table 4. Output for the first scenario 

Vehicle Route Load 
Vehicle 

Capacity 

Travelled 

time 

1 1 (1-3-7-1) 75 80 60 

 2 (1-6-4-1) 80 80 43 

2 1 (1-2-5-1) 75 80 85 

 
Table 5. Output for the second scenario 

Vehicle Route Load 
Vehicle 

Capacity 

Travelled 

time 

2 1 (1-6-4-1) 80 80 60 

 2 (1-2-5-1) 75 80 43 

 3 (1-3-7-1) 75 80 85 

 

The instance above is then being solved based on two 

scenarios above using branch and bound in LINGO 

16.0. The output for the first scenario and the second 

scenario is shown in Table 4 and Table 5. 

 

The total cost for the first scenario is 37.600 and 

using two vehicles (vehicle 1 and vehicle 2). Table 4 

shows that the output of the LINGO 16.0 is verified 

because the output is not exceeding the constraints 

on the model, so the mathematical model is also 

verified. If every route does not exceed the vehicle 

capacity, then the vehicles can make multi-trip. In 

this case, those vehicles can visit all customers exact-

ly once. Moreover, the total time of each vehicle will 

not exceed the maximum working hour per day, i.e. 

420 minutes. 

 

The total cost for the first scenario is 38.600 and 

using only one vehicle (vehicle 2). The vehicle used in 
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scenario 2 is less than in scenario 1 because there is 

fixed cost in each vehicle so to minimize the total cost 

that includes fixed cost, the number of the vehicle 

used is also minimized. From Table 5 we know that 

the output of the mathematical model is verified 

because the output is not exceeding the constraints 

on the model, so the mathematical model is also 

verified. If every route does not exceed the vehicle 

capacity, then the vehicle can make a multi-trip.  In 

this case, the vehicles can visit all customers exactly 

once. Moreover, the total time of each vehicle will not 

exceed the maximum working hour per day. 

 

Proposed Genetic Algorithm 

 

Because the nature of HVRPMT that is NP-hard 

problem, so in solving the large problem, using 

branch and bound is not efficient in term of compu-

tational time. We proposed a genetic algorithm (GA) 

for solving a large-real problem. We chose GA 

instead of the other metaheuristics since the GA 

performance is outstanding compared to others. 

Even if some other metaheuristics can find a better 

solution than GA, GA can generally find adequate 

solutions in a shorter time frame. Those are the 

main reasons why GA are still used in solving the 

routing, locating and other NP-hard problems. There 

have been many types of research done about solving 

VRP with GA where the researchers focused on the 

practical usage of the GA on VRP real-world problem 

(Karakatic and Podgorelec [20]). This section 

describes the details about the components of the 

proposed GA for this research. The flowchart of the 

proposed GA is shown in Figure 2. 

Solution Representation 
 

Encoding solution of the problem into a chromosome 
has a high impact on GA. Since the sequence of the 
customer must be different, we use a permutation 
encoding to make sure there is no same customer in 
every chromosome. The solution is represented by an 
array so that the values of the genes correspond to 
the nodes selected to form the collection of gene-
ralized routes while {1} is a trip splitter on one 
vehicle and {0} is a vehicle splitter. For example for 7 
customers, the solution is {1 5 2 1 3 7 1 0 1 6 4 1}. 
Route 1 is 1-5-2-1 which is served by vehicle 1 on 
first route. Route 2 is 1-3-7-1 which is served by 
vehicle 1 on second route. Route 3 is 1-6-4-1 which is 
served by vehicle 2 on first route. 
 
Feasible Solution to Handling Constraints 
 

In this research, the only feasible solution is gene-
rated on every chromosome. This way to the only 
generated feasible solution is called preserving stra-
tegies (Talbi [21]). First, we use a sequence of a 
customer without trip splitter like in Traveling 
Salesman Problem (TSP) solution. This sequence is 
split by a constraint of vehicle capacity and working 
hour per day. We start from the first customer in the 
sequence and then move to the next customer while 
checking the vehicle capacity and working hour per 
day. If the load of the sequence exceeds the vehicle 
capacity but still not exceed working hour, then the 
same vehicle is used again until it exceeds a working 
hour. If the working hour is exceeded, then the next 
vehicle is used. This step is continued until all of the 
customers are served. The pseudocode to handling 
constraints is given in Figure 3. 

 
Figure 2. Flowchart of the proposed GA 
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Initial Population 
 

Initially, the population of travelling salesman 

problem (TSP) tour is constructed by following the 

Nearest Neighbor (NN) heuristic algorithm and 

random procedure. First of three chromosomes is 

constructed with the NN algorithm with a random 

initial customer. The rule of NN algorithm is always 

going to the next nearest unvisited customer until all 

customer is visited while the random procedure is 

constructed a random permutation of n customer. 

 

Evaluation Function 

 

Every feasible chromosome is evaluated using its 

fitness value which measures its quality. The fitness 

value is given by the total cost of travelling all the 

vehicles, both fixed and variable vehicle cost. In a 

natural evolution, an individual with high fitness 

value will survive while an individual with low 

fitness value will die. GA is based on this survival-of-

the-fittest principle of nature, so it tries to maximize 

a function called the fitness function and naturally 

appropriate of solving maximization problem. For a 

maximization problem, the fitness function,     , 
can be taken to be same as the objective function 

    . For minimization problem, it can be 

transformed into a maximization problem first. The 

commonly used transformation to convert mini-

mization problem to a fitness function is       
          (Rao [22]). In this research, the objective 

function is to minimize the total cost than the fitness 

value of each chromosome is 1 / total cost. 

 

Selection 

 

In the GA, an appropriate method for choosing chro-

mosomes for the crossover must be employed to give 

more chance to those chromosomes in a population 

that is the most fit. In this proposed GA, roulette 

wheel and linear rank selection method are used 

during the selection process. The roulette wheel is 

known as the best solution method (Gen and Chang 

[23]), and rank selection is commonly used in GA. 

1. Initialize index of the customer, index of the route, index of vehicle, a load of the route, the load of the vehicle, total 
load, duration of route, duration of the vehicle, total duration. 

2. While index of vehicle <= total number of vehicle 
3. While index of route <= total route 
4. While index of customer <= total number of customer and load of route <= vehicle capacity and duration of route <= 

working hour and index of vehicle <= total number of vehicle 
 load of route = load of route + demand of  customer i 
 duration of route = duration of route + time to visiting customer i from i – 1 based on the sequence of customer 

if load of route > vehicle capacity 
load of route = load of route - demand of customer i 
duration of route = duration of route-time to visiting customer i-1 to i 
vehicle than go back to depot 

end if 
if duration of route > working hour 

load of route = load of route - demand of customer i 
duration of route = duration of route-time to visiting customer i-1 to i 
break while (3) 

end if 
end while (3)  

load of vehicle = load of vehicle + demand of customer i 
duration of vehicle = duration of vehicle + duration of route-time to visiting customer i-1 to i 
if duration of vehicle > working hour  

load of vehicle = load of vehicle – demand of customer i 
break while (2) 

end if 
if index of cutomer > number of customer 

break while (2) 
end if 

end while (2) 
cost = fixed cost of vehicle + variable cost of vehicle*duration of vehicle 
total load = total load + load of vehicle 
total duration = total duration + duration of vehicle 
if index of customer > number of customer 

break while (1) 
end if 
Total cost = Total cost + cost 

end while (1) 
 

Figure 3. Pseudocode to handling constraints 

 

 



Setiawan et al. / Modelling and Solving Heterogenous Vehicle Routing Problem / JTI, Vol. 21, No. 2, December 2019, pp. 91-104 

 98 

 
Figure 4. Scheme of order crossover 

 
Table 6. Vehicle Specification 

Vehicle 
Capacity 

(cm3) 

Fixed cost per 

vehicle (Rp) 

Variable cost per 

minute per vehicle 

(Rp) 

1 292384 70000 240.74 

2 292384 70000 240.74 

3 292384 70000 240.74 

4 5309436 200000 866.667 

 

Crossover 

 

Through the selection method described above, two 

chromosomes from the current population are 

selected from the mating parents by means of the 

probability of crossover. If a randomly generated 

number between 0 and 1 is smaller than the proba-

bility of crossover, these two chromosomes reproduce 

to form new members to be included in the next 

generation. Otherwise, the crossover does not take 

place. In this proposed GA the order crossover is 

applied. In order crossover, one part of a chromo-

some is exchanged while maintaining a sequence of 

cities that are not part of the chromosome. The 

illustration of order crossover which applied in this 

research can be shown in Figure 4. 
 

From Figure 5, initially, we generate two random cut 

points (1) and (2) to cut two parent chromosomes, K1 

and K2. Then, two-child chromosomes, A1 and A2, 

get the genes from K1 and K2 chromosomes cross-

wise. A1 chromosome gets {6,1,5} and A2 chromo-

some gets {1,4,3}. The empty genes position in A1 

chromosome is filled by the K1 genes, sequentially 

from gen 1 to gen 6, which is not yet in A1. The same 

fashion is done on chromosome A2. 

 

Mutation 
 

Mutation operator brings random changes into a 

single chromosome. If a randomly generated number 

between 0 and 1 is smaller than the probability of 

mutation, these chromosomes changes to form a new 

member in the next generation. Otherwise, the 

mutation does not take place. These random changes 

prevent premature local convergence. In this 

proposed GA, the mutation is done by choosing three 

different kinds of mutation procedures, according to 

Santosa and Ai [24]. The random number between 1 

and 3 is generated to choose one of the mutation 

procedure. Suppose there is a route 4 – 6 - |2 – 3 – 5  

– 1| – 7. Three different kinds of mutation proce-

dures are as follows: 
 

Flip: is done by flipping a segment of the route 

between two vertical lines to become 4 – 6 - |1 – 5 – 

3 – 2| - 7. 
 

Swap: is done by swapping the customer at 3 and 6 

to become 4 – 6 - |1 – 3 – 5 – 2| - 7. 
 

Slide: is done by sliding route between two vertical 

lines to become 4 – 6 - |5 – 3 – 2 – 1| - 7. 

 

A Real Case Problem 

 

Real case in this research is a distribution problem 

in one of a pharmacy distribution company in Indo-

nesia. The case is the company need to deliver its 

multi-products to its 55 customers using hetero-

geneous vehicles. It has two types of vehicles (see 

Table 6 for the vehicles specification). The variable 

cost includes fuel cost, which depended to vehicle 

type. Based on the data from the company, there are 

two types of vehicles (car and motorcycle) that is 

owned by that company to distribute its products. 

Vehicle 4 (car) can take a distance about 7,5 km per 

litre of fuel and vehicle 1, 2, 3 (motorcycle) can take a 

distance about 36 km per litre of fuel. The average 

velocity for vehicle 4 is 60 km/hour and vehicle 1, 2, 3 

are 80 km/hour. Fuel cost per litre is Rp 6,500, 00. 

Fixed cost is obtained by the cost to rent a vehicle per 

day if the company does not own that vehicle. The 

calculation to get variable cost for every vehicle can 

be shown in Table 7. 

 

In this real case, there are vehicles with small 

capacity that can perform several trips during its 

workday (vehicle 1, 2 and 3). The vehicle variable 

cost includes the fuel cost per minute that is 

dependent on the vehicle type. Driver working hours 

per day are 7 hours (420 minutes). 
 

This real case is then solved using two scenarios 

mention in the previous section.  
 

Currently, the company grouped the customers 

based on their distance to the depot. If the distance 

from the depot is more than 20 km than this cus-

tomers is served by vehicle 4 (car) and if the distance 

the depot is less than 20 km than those customers 

are served by vehicle 1, 2 or 3 (motorcycle). The 

company allows the vehicle 1, 2 and 3 (motorcycle) to 

travel more than one route to maximize its utili-

zation. Then the route of each vehicle is determined 

K1 2 5 1 4 3 6

K2 3 2 6 1 5 4

A1 6 1 5

A2 1 4 3

A1 2 4 6 1 5 3

A2 2 6 1 4 3 5

1 2 
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arbitrarily based on the driver experiences. The 

distribution route and the vehicle assigned to them 

are as follows  

Vehicle 1 (motorcycle): 
route 1: 1 – 11 – 31 – 14 – 45 – 48 – 1  
route 2: 1 – 54 – 53 – 44 – 55 – 52 – 1  

Vehicle 2 (motorcycle):  
route 1: 1 – 49 – 47 – 38 – 29 – 32 – 35 – 51 – 1 
route 2: 1 – 56 – 4 – 3 – 36 – 43 – 46 – 1 

Vehicle 3 (motorcycle):  

route 1: 1 – 50 – 42 – 41 – 39 – 21 – 40 – 1 

Vehicle 4 (car):  
route 1: 1 – 2 – 33 – 34 – 37 – 30 – 9 – 10 – 5 – 6 
– 15 – 17 – 18 – 8 – 12 – 16 – 19 – 20 – 24 – 27 – 
25 – 23 – 26 – 22 – 28 – 7 – 13 – 1  

 
Using an exact method to solve the real case 
problem 
 
In this section, the real case is solved using the exact 
method branch and bound in LINGO 16.0 solver. 
Because HVRPMTMP is NP-hard problem than we 
try with the small number of customer first to know 
how far branch and bound can handle the problem 
as the number of customers is getting bigger. If the 
exact method can not handle the real case in con-
siderable computational time, then the genetic 
algorithm is used. Two scenarios like in small in-
stance is also used in this real case problem. The 
result from LINGO 16.0 for the first scenario is 
shown in Table 8.  
 
Table 8 shows that LINGO 16.0 can solve optimally 
within 10.800 seconds only for 8 customers. The 
computational time in LINGO 16.0 is increasing 
exponentially due to the number of customers are 
getting bigger. Figure 5  shows the computational 
time for LINGO 16.0. 
 
The result from LINGO 16.0 for the second scenario 
is shown in Table 9. 
 
From Table 9, we can know that LINGO 16.0 can 
solve optimally within 10.800 seconds only for 7 
customers. The computational time in LINGO 16.0 
is increasing exponentially due to the number of 
customers are getting bigger. 
 
Genetic Algorithm Verification 
 

Verification of the proposed GA is done by comparing 

the result of the proposed GA and result of the exact 

method by LINGO 16.0. Since LINGO 16.0 cannot 

solve the problem more than 9 customers after 

10800 seconds than we use a GA for solving the big 

problem in more reasonable computational time. 

Comparison of the result between the proposed GA 

and LINGO 16.0 for two scenarios are shown in 

Table 10 and Table 11. 

 
Table 8. LINGO 16.0 result for the first scenario in solving 

the real case problem 

Number of 

customers 
Total cost 

Number of 

vehicles used 

Computation 

time (s) 

5 19018.5 1 18 

6 24314.7 1 46 

7 40444.3 2 1265 

8 39722.1 2 3149 

9 54407.2 2 10800* 
*not solved optimally after 10800 s  

 

 
Figure 5. Computational time using LINGO 16.0 for the 

first scenario 

 
Table 9. LINGO 16.0 result for the second scenario in 

solving the real case problem 

Number of 

customers 
Total cost 

Number of 

vehicles used 

Computation 

time (s) 

5 89018.5 1 32 

6 94314.7 1 166.7 

7 110444.3 1 3402.01 

8 109722.1 1 10800* 

9 124407.2 1 10800* 
*not solved optimally after 10800 s  

 
Table 10. Comparison the result for the first scenario 

Number of 

customers 

LINGO 16.0 Proposed GA 

Total cost 
Computati

on time (s) 
Total cost 

Computati

on time (s) 

5 19018.5 18 19018.5 3.25 

6 24314.7 46 24314.7 4.39 

7 40444.3 1265 40444.3 4.4 

8 39722.1 3149 39722.1 4.4 

9 54407.2 10800* 54407.2 4.5 
*not solved optimally after 10800 s 
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Table 7. Calculation of fuel cost 

Vehicle 
Fuel consumption 

(km/litre) 
Average velocity 

(km/hour) 
Fuel consumption 

conversion (litre/hour) 
Fuel consumption 

conversion (litre/minute) 
Fuel cost 

(Rp/minute) 

1,2,3 36 80 2.22 0.037 240.74 

4 7.5 60 8 0.133 866.667 
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Table 11. Comparison of the result for the second scenario 

Number of 

customers 

      LINGO 16.0 Proposed GA 

 Total cost Computation 

time (s) 

Total cost Computati

on time (s) 

5 89018.5 32 89018.5 3.44 

6 94314.7 166.7 94314.7 3.81 

7 110444.3 3402.01 110444.3 3.88 

8 109722.1 10800* 109722.1 4.07 

9 124407.2 10800* 124407.2 16 
*not solved optimally after 10800 s 
 

As shown in Table 10 and Table 11, we know that 

until 9 customers, GA can give the same solution as 

LINGO 16.0 solver but in a more reasonable time. 

By this result, the algorithm is verified and can be 

used to solve the real case with 55 customers. 

 

Parameter Setting 
 

The parameters of GA are population size, proba-

bility of crossover, probability of mutation and a 

maximum number of generation. The values of those 

parameters need to be selected carefully. A good 

parameter setting is essential for the metaheuristics 

algorithm like GA to obtain a good solution. In order 

to obtain proper parameters for GA, design experi-

ments can be implemented to study the effects of the 

input factors and their interactions on the system 

performances and delineate which factor has the 

most effects to the responses (Shahsavar et al. [25]). 

Furthermore, when the study involves two or more 

factors, the factorial design is generally the most 

efficient way of delineating significant factors 

(Montgomery [26]). The effects of different patterns 

and parameters along with their interactions can be 

analyzed using a factorial design such as a full 

factorial design (2k factorial) in which k is the 

number of factors (Shahsavar et al. [25]). To get a 

high level and low level to be used in this method, a 

pilot experiment is performed by determining the 

initial values for each parameter to be tested 

(Lathifah [27]). The pilot experiment started by 

Table 12. One at A Time (OAT) method for parameter setting 

No Parameter Population size  Maximum generation Crossover probability Mutation probability 

1 

Population size 

50 2000 0.8 0.001 

2 100 2000 0.8 0.001 

3 150 2000 0.8 0.001 

4 200 2000 0.8 0.001 

5 

Maximum generation 

100 1000 0.8 0.001 

6 100 1500 0.8 0.001 

7 100 2000 0.8 0.001 

8 100 2500 0.8 0.001 

9 

Crossover probability 

100 2000 0.65 0.001 

10 100 2000 0.7 0.001 

11 100 2000 0.8 0.001 

12 100 2000 0.9 0.001 

13 

Mutation probability 

100 2000 0.8 0.001 

14 100 2000 0.8 0.005 

15 100 2000 0.8 0.01 

16 100 2000 0.8 0.05 

 
Table 13. The result of OAT method 

No Replication 1 Replication 2 Replication 3 Replication 4 Replication 5 Average High level Low level 

1 215943.78 217147.48 220277.1 195721.62 297410.898 229300.18   

2 209433.8 231832.62 194999.4 210888.24 203666.04 210164.02 V  

3 221962.28 227258.56 213777.12 218832.66 211610.46 218688.22  V 

4 219554.88 225332.64 230388.18 225332.64 230388.18 226199.3   

5 228943.74 212332.68 230388.18 212091.94 226295.6 222010.43   

6 203906.78 218351.18 221962.28 220517.84 218591.92 216666   

7 209433.8 231832.62 194999.4 210888.24 203666.04 210164.02  V 

8 220999.32 196684.58 216425.26 228462.26 184888.32 209491.95 V  

9 213536.38 203425.3 196684.58 218832.66 219554.88 210406.76   

10 200054.94 214017.86 199573.46 205110.48 220036.36 207758.62 V  

11 209433.8 231832.62 194999.4 210888.24 203666.04 210164.02  V 

12 215221.56 216184.52 208962.32 230388.18 227258.56 219603.3   

13 209433.8 231832.62 194999.4 210888.24 203666.04 210164.02   

14 206554.92 212091.94 222925.24 182480.92 222443.76 209299.36 V  

15 227980.78 215943.78 206554.92 204147.52 204869.74 211899.35   

16 208240.1 212814.16 207517.88 213777.12 204629 209395.65  V 
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determining the initial values for each parameter to 

be tested. The initial values are based on the 

recommended values in the literature. We use the 

initial value suggested by De Jong [28]. The initial 

value of population size is 100, the probability of 

crossover is 0.8, the probability of mutation is 0.001, 

and the maximum of generation is 2000. Then we 

were using a One at A Time (OAT) method to get the 

low and high level for 2k factorial design in Table 12 

and 13. For every parameter, we try some values 

that are set arbitrary based on the initial value. In 

every OAT experiment, we do replication for 5 times. 

 

Based on the result in Table 12, we have 16 

combinations in the parameter setting to get the 

high and low value for 2k factorial design. We do 5 

times replication for each combination. The result of 

OAT can be shown in Table 13, and the result of 

high level and low level for 2k factorial design can be 

shown in Table 14. 

 

As shown in Table 13, for each parameter, we set the 

best result as high level and the second best as low 

level. The total combination is 16 (2 total number of 

parameters = 24). In 2k factorial design, each 

parameter combination is evaluated by doing 5 times 

replication in order to get the best combination of 

them. The combinations are shown in Table 15. 
 

Table 14. The high level and low level of the proposed GA 

parameter  

Parameter High level Low level 

Population size 100 150 

Maximum Generation 2500 2000 

Crossover probability 0.7 0.8 

Mutation probability 0.005 0.05 

 

 

Figure 6. Graph of the result from MATLAB 

 

The lowest average for all combinations is chosen as 

the best parameter combination and then is applied 

to proposed GA. The best parameter combination is 

population size = 100, probability of crossover = 0.8, 

probability of mutation = 0.005 and the maximum of 

generation = 2000. 

 

Using the Proposed Genetic Algorithm to 

Solve the Real Case Problem  

 

After parameter setting for the proposed genetic 

algorithm is done and because the exact method can 

not solve the real case optimally in reasonable com-

putational time, then we use the proposed genetic 

algorithm to solve it. The proposed GA is run in 

MATLAB R2015a. There are also two scenarios, like 

in small instances. Figure 6 shows the graph of the 

result from MATLAB for the first scenario.  

 

Table 15. 2k factorial design combination for proposed GA 

No Population size  Maximum generation Crossover probability Mutation probability Average Result 

1 100 2000 0.7 0.005 212573.4 

2 100 2000 0.7 0.05 213215.4 

3 100 2000 0.8 0.005 189622.9* 

4 100 2000 0.8 0.05 213696.9 

5 100 2500 0.7 0.005 202061.1 

6 100 2500 0.7 0.05 209524 

7 100 2500 0.8 0.005 198931.5 

8 100 2500 0.8 0.05 208641.3 

9 150 2000 0.7 0.005 222764.7 

10 150 2000 0.7 0.05 216104.3 

11 150 2000 0.8 0.005 201098.1 

12 150 2000 0.8 0.05 215462.3 

13 150 2500 0.7 0.005 215943.8 

14 150 2500 0.7 0.05 218190.7 

15 150 2500 0.8 0.005 206956.2 

16 150 2500 0.8 0.05 209684.5 
*best combination of proposed GA parameter 
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From Figure 6 we know that the minimum cost 

obtained is 180.555 (Objective function). The result 

of the first scenario obtained can be seen as follows  

Vehicle 1 (motorcycle): 

route 1: 1 – 13 – 8 – 12 – 16 – 1  

route 2: 1 – 4 – 37 – 5 – 30 – 1  

route 3: 1 – 48 – 45 – 31 – 46 – 43 – 36 – 9 – 15 – 1 

route 4: 1 – 38 – 6 – 3 – 1 

route 5: 1 – 34 – 10 – 22 – 11 – 1 

Vehicle 2 (motorcycle):  

route 1: 1 – 52 – 28 – 19 – 25 – 24 – 23 – 26 – 40 – 

21 – 1 

route 2: 1 – 49 – 2 – 47 – 29 – 51 – 1 

route 3: 1 – 54 – 27 – 44 – 55 – 53 – 56 – 1 

route 4: 1 – 14 – 17 – 18 – 20 – 7 – 35 – 1 

Vehicle 3 (motorcycle):  

route 1: 1 – 50 – 39 – 41 – 42 – 32 – 33 – 1 

 

The result obtained is only used vehicle 1, 2 and 3 

(motorcycle) because the variable cost of the 

motorcycle is smaller than the variable cost of a car 

(vehicle 4). Since vehicles 1, 2, and 3 can still distri-

bute the products to customers without violating 

capacity and working hour restrictions, then the 

proposed GA is not including the vehicle 4 in order to 

minimize total cost. Then, we check this result 

whether violating capacity and working hour 

constraint that is shown in Table 16 below. It shows 

that every vehicle on every route does not violate 

capacity constraint, and every vehicle does not 

violate working hour per day that is 420 minutes. 

 

While the result for the second scenario can be seen 

in Table 17 and as follows 

Vehicle 1 (motorcycle): 

route 1: 1 – 13 – 8 – 12 – 16 – 1  

route 2: 1 – 4 – 37 – 5 – 30 – 1  

route 3: 1 – 48 – 45 – 31 – 46 – 43 – 36 – 9 – 15 – 1 

route 4: 1 – 38 – 6 – 3 – 1 

route 5: 1 – 34 – 10 – 22 – 11 – 1 

route 6: 1 – 50 – 39 – 41 – 42 – 32 – 33 – 1 

Vehicle 2 (motorcycle):  

route 1: 1 – 52 – 28 – 19 – 25 – 24 – 23 – 26 – 40 – 

21 – 1 

route 2: 1 – 49 – 2 – 47 – 29 – 51 – 1 

route 3: 1 – 54 – 27 – 44 – 55 – 53 – 56 – 1 

route 4: 1 – 14 – 17 – 18 – 20 – 7 – 35 – 1 

 

In the second scenario we assume that the company 

does not have any vehicles so it must rent the 

vehicle. The cost of rent is expressed by fixed cost. 

The vehicle used in the second scenario is fewer than 

the vehicle used in the first scenario because the 

objective is to minimize total fixed and variable cost 

so by using the fewer vehicle, the lower the fixed 

cost. The vehicle can be assigned more tour as long 

as the total delivery time does not violate the 

working hour restriction. 

Comparing the Result of the Proposed GA 

with the Company Decision 

 

Since the company in real case problem own their 

vehicle to distribute their products than only the 

result from the first scenario (only considering the 

variable cost of the vehicle) is compared to the 

distributional decision that is made by the company. 

The result from the proposed GA can reduce the 

total cost from Rp 352540.6,- to Rp 180555,- or 

48.78% from the company decision. This happens 

because, in the company policy, customers are 

clustered first based on the vehicle type, so the 

vehicle type with the high variable cost (vehicle 

4/car) is also used. In this research, vehicle 4 (car) is 

not used because the vehicles with low variable cost 

(motorcycle) are used maximally in their working 

day, and they can cover all the customer demand.  

 

Conclusion 
 

In this paper, a mathematical model for hetero-

geneous vehicle routing problem with multi-trips 

and multi-products (HVRPMTMP) with fixed and 

variable vehicle cost has been developed using 

developed four-index vehicle flow formulation. This 

model can be used generally in the same context of 

the distribution problem. Branch and bound is also 

used to solve a real case with 55 customers using 

LINGO 16.0. The real case can be solved optimally 

within 10,800 seconds with LINGO 16.0 until 8 

customers.  

 

The result from the proposed GA is then compared to 

the result from LINGO 16.0 until 9 customers, and 

both the result is same so GA is verified and can be 

used to solve the real case with 55 customers. The 

result of the proposed GA can reduce the total cost 

from Rp 352540.6 to Rp 180555 or 48.78% from the 

current company decision. In term of fixed cost 

depending on the ownership status of the vehicle, if 

the company owns the vehicles, then there is no 

difference whether using fewer vehicles or not as 

long as the vehicle types are same (same variable 

cost). If the company does not own the vehicles, then 

there is a difference using fewer vehicles because 

there is an effort required to provide a vehicle (the 

cost to rent vehicles that are associated as fixed cost). 

 

The company can apply our suggested route and 

vehicle used based on the result of our proposed GA 

to minimize total distributional cost. It means that 

the car is not used as long as the number of 

customers does not change. There are advantages 

and disadvantage that the company does not use the 

car. The advantages are the company does not need 

the driver for the car, and since the car is not used, 

the company does not need to spend a lot of money 
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on maintenance. The disadvantage is if the company 

already have a driver for the car, then the company 

must consider the other job/task for the driver. Our 

approach is effective if the company does not have 

any vehicle for distributing the product since our 

approach can minimize the number of vehicles that 

it can minimize the fixed cost. 

 

For further research, to enrich the type of the 

problem, it can be relevant by adding a constraint 

that small vehicle is used access the customer in the 

restricted area or to reduce the congestion in city 

logistics context that only use a small vehicle in the 

city center. 
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1 1 85703.44 70000 155703.4 

 2    

 3    

 4    

 

5 

6 

   

2 1 94851.56 70000 164851.6 

 2    

 3    

 4    

Total cost (Rp)    320555 
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